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Abstract. In relativistic Schr̈odinger theory, additional conservation laws arise of topological
origin. These are due to the existence oftopological currentswhich are built up by the
exclusive use of operators, whereas thematter currentsare composed of the densities. The
general concepts and results are exemplified by considering a specific (Dirac) spinor field over
the Robertson–Walker universes. The invariant, associated to the topological current, can be
explicitly determined for SU(2)-bundles.

1. Introduction

In any field theory of matter, quantum or classical, the conservation laws play a dominant
role. These conservation laws are frequently reformulated in differential terms as some
kind of continuity equation for the corresponding density (for example current densityjµ or
energy–momentum densityTµν , etc). Here the general belief is that the scientific aesthetics
and internal consistency of a theory should be estimated by looking at the way in which
the conservation laws are built into the basic structure of that theory. The two famous
yardsticks in this respect are Einsteins gravitation theory and the Yang–Mills equations. Let
us first have a glance at these two successful theories before making the aim of the present
paper more precise.

Remember that Einstein’s equations for determining the metricgµν of pseudo-
Riemannian spacetime read†

Rµν − 1

2
Rgµν = 8π

L2
p

h̄c
Tµν. (1.1)

On the other hand, for any Riemannian curvature tensorRµνλσ one has the Bianchi identity

∇ρRµνλσ +∇λRµνσρ +∇σRµνρλ ≡ 0. (1.2)

Thus, contract this identity twice and find

∇µ(Rµν − 1
2Rgµν) ≡ 0

(Rµν + Rλµλν, R + Rµµ).
(1.3)

But applying this result to Einstein’s equations (1.1) readily yields the energy–momentum
conservation law in the form

∇µTµν ≡ 0. (1.4)

† Throughout the paper we work over a pseudo-Riemannian spacetime as base manifold with the (coordinate-)
covariant derivative∇ referring to the Levi–Civita connection of the tangent metricgµν .
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In this way, the validity of the physically significant conservation law (1.4) has been traced
back to Einstein’s fortunate choice of the equation of motion (1.1) with regard to the
mathematical identity (1.2).

The same successful procedure of combining the identities (of the underlying
mathematical structure) with the dynamical equations in order to generate the conservation
laws is also observed for the Yang–Mills theory. Here, the sources of the ‘field strength’
Fµν are identified by the field equations with the matter currentsJν through

DµFµν = 4πJν
(DλFµν + ∇λFµν + [Aλ,Fµν ], Āλ = −Aλ).

(1.5)

On the other hand, for the curvatureFµν of the corresponding fibre bundle we have the
identity

[DλDσ −DσDλ]Fµν ≡ [Fλσ ,Fµν ] − RρµλσFρν − RρνλσFµρ. (1.6)

Thus, contract again this identity twice and find

DµDνFµν ≡ 0. (1.7)

But applying this result to the Yang–Mills equations (1.5) readily yields the continuity
equation for the current densityJν

DµJµ ≡ 0. (1.8)

(For ordinary Maxwellian electrodynamics this is the charge conservation law:∇µjµ ≡ 0.)
The present paper is now concerned with similar investigations of a further theory which

has recently been constructed along the lines of those successful theories described above:
the relativistic Schr̈odinger theory (RST) [2]. In order to see how the conservation laws
emerge in this theory, let us start here with its central equation of motion which is the
relativistic Schr̈odinger equation (RSE) for theN -component wavefunctionψ

ih̄cDµψ = Hµ · ψ. (1.9)

The ‘Hamiltonian’ Hµ itself is a dynamical object (among others) obeying the field equation

DµHν −DνHµ + i

h̄c
[Hµ,Hν ] = ih̄cFµν. (1.10)

The internal consistency of the RST is expressed now by the fact that this ‘integrability
condition’ (1.10) implies both the Bianchi identity forFµν

DλFµν +DµFνλ +DνFλµ ≡ 0 (1.11)

and the bundle identity for the wavefunctionψ

[DµDν −DνDµ]ψ = Fµν · ψ. (1.12)

But the crucial point here is that equation (1.10) (as onlyone part of the whole dynamical
system) is already sufficient to establish additional conservation laws, apart from those
following from the completeset of dynamical equations. Thus the RST is equipped with
current densities of topological (hµ) and dynamical (jµ) origin, each type of current obeying
the corresponding continuity equation:

∇µjµ ≡ 0 (1.13a)

∇µhµ = 3
2ε
µνλσ tr(Fσµ · Fνλ). (1.13b)
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But whereas the matter current (jµ) naturally reflects the distribution of matter over
spacetime, the topological currenthµ is built up exclusively by the HamiltonianHµ and
curvatureFµν

hσ = −2iεµνλσ tr

(Hµ ·Hν ·Hλ
(h̄c)3

+ 3

2

Hµ
h̄c
· Fνλ

)
(1.14)

where both objectsHµ andFµν may be thought of as being rather independent of the actual
matter distribution. Since the Hamiltonian is non-Hermitian (H̄µ 6= Hµ) in general, this
currenthσ is complex

hσ = tσ + izσ (1.15)

and since its source (1.13b) is real, we must have

∇σ tσ = 3
2ε
µνλσ tr(Fσµ · Fνλ) (1.16a)

∇σ zσ ≡ 0. (1.16b)

Thus both the matter currentjµ (1.13a) and the topological currentzµ (1.16b) have vanishing
source and therefore define constants of motion, but of quite different nature: whereas the
constant referring to the matter currentjµ fixes certain material properties of the physical
system, the currentstµ andzµ eventually yield topological quantum numbersnt , nz which
are closely related to the deRham cohomology group of the underlying spacetime:

48π2nz =
∮
C3

∗z (1.17a)

48π2nt =
∮
C3

∗t. (1.17b)

The integersnz are then independent of how the dynamics is precisely realized. Obviously,
this result is a further example of the occurrence of conservation laws through cooperation
of the mathematical identities with the equations of motion (for the general significance of
topological methods in gauge theories see also [3] and literature cited therein).

The present results are subsequently worked out in detail as follows.
In section 2, we first present a brief sketch of the basic structure of RST with emphasis on

currents and conservation laws. From this approach to RST, the emergence of topological
currents will be almost self-evident (section 3). The topological numbersn (1.17) are
discussed together with the situation where the source oftµ (1.16a) also vanishes without
the curvatureFµν being zero. In section 4, a special example is presented in great detail in
order to demonstrate the consistency of the general concepts and results. We consider here a
special (Dirac) spinor field configuration over the Robertson–Walker universes and compute
the corresponding topological numbers. Section 5 expresses the topological currents in
terms of matter densities. In section 6 we present some arguments for why the quantum
number due to∗z should always vanish for a SU(2) bundle, i.e. the Poincaré dual∗z of zµ
should always be an exact 3-form, in contrast to the case of∗t. The discussion (section 7)
uses these results in order to draw certain conclusions about the topology of solutions to
the coupled Einstein–Yang–Mills–Higgs (EYMH) equations.

2. Matter currents

In order to elucidate the quite different nature of the matter and the topological currents,
we first present a brief sketch of the general structure of RST with emphasis on the matter
currents (and other matter densities).
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Here, the basic concept is the intensity matrixI(x) which together with a certain
Hermitian operatorδ(x) (= δ̄) produces the associated extrinsic density1(x) in a gauge
invariant way:

1(x) = tr{I(x) · δ(x)}. (2.1)

(In order for the (pseudo-) Hermiticity ofI to be preserved during a change of gauge
I → S−1 · I · S, the gauge elementS should be a member of one of the (pseudo-)unitary
groups inN dimensions:S̄ = S−1.)

In the present context, the most relevant object is the velocity operatorvµ generating
the convection currentjµ

jµ = tr(I · vµ) (2.2)

which provides us with a first information of how the matter is distributed over spacetime.
A special situation is encountered when matter is in a pure stateψ(x), so that the intensity
matrix I essentially adopts the specific form of a projector

I ⇒ ψ ⊗ ψ̄. (2.3)

This implies that the intensity matrixI(x) obeys the ‘Fierz identity’ [4–6]

I2 = ρI (2.4)

where the scalar densityρ(x) is the simplest one of all the physical densities, namely

ρ + tr I. (2.5)

Clearly, for such a pure state the current densityjµ (2.2) is recast into the form

jµ = ψ̄ · vµ · ψ (2.6)

or similarly for the scalar densityρ (2.5)

ρ = ψ̄ · ψ (2.7)

etc. The other physical densities of the theory are formed by the same procedure, for
example the energy–momentum densityTµν(x) is due to the corresponding operatorTµν

Tµν = tr(I · Tµν) (2.8)

but in the present paper our main interest lies upon the current densitiesjµ (2.2).
In most situations, matter is not free but rather is acted upon by some force fieldFµν (to

be considered here as the Lie-algebra valued bundle curvature). Consequently, the question
arises of how the densities are changing under the influence of that force fieldFµν , i.e. we
have to look for the dynamical equations for those densities. Here, the crucial concept is
the HamiltonianHµ(x), a GL(N,C)-valued 1-form acting upon theN -component bundle
sectionψ(x) in the following way

ih̄cDµψ = Hµ · ψ
(Dµψ + ∂µψ +Aµ · ψ, Āµ = −Aµ)

(2.9)

(RSE). If matter is not in a pure state, the corresponding equation must refer to the intensity
matrix I in place ofψ , i.e.

DµI = i

h̄c
[I · H̄µ −Hµ · I] (2.10)

(DµI + ∂µI + [Aµ, I]). (2.11)
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Obviously, the Hamiltonian governs the motion of matter but, on the other hand, it is
generally thought that the origin of motion is the force fieldFµν . Therefore one expects a
link between both objectsHµ andFµν , and this is the ‘integrability condition’

DµHν −DνHµ + i

h̄c
[Hµ,Hν ] = ih̄cFµν. (2.12)

This equation is the first half of the equations of motion forHµ and simultaneously it ensures
the existence of solutionsψ(x) for the RSE (2.9) or its generalization (2.10). Observe also
that the integrability condition (2.12) automatically implies the bundle identities forψ

[DµDν −DνDµ]ψ = Fµν · ψ (2.13)

or for I, respectively

[DµDν −DνDµ]I = [Fµν, I]. (2.14)

Moreover, the integrability condition for the existence of solutionsHµ(x) to equation (2.12)
is just the well known Bianchi identity

DλFµν +DµFνλ +DνFλµ ≡ 0 (2.15)

which identifies the force fieldFµν as the curvature of the corresponding bundle connection
Aµ:

Fµν = ∇µAν −∇νAµ + [Aµ,Aν ]. (2.16)

But now comes the crucial point and this is the question of the conservation laws.
Overwhelming experimental evidence tells us that elementary matter systems (‘particles’)
carry along with them some physical invariants (rest mass, charge etc) which cannot be
changed without destroying the particle. The mathematical expression of these conservation
laws are the continuity equations

∇µjµ = 0. (2.17)

In the present context it is essential to remark that such a conservation law isnot implied
by those dynamical equations (2.9) or (2.10) considered up to now. Therefore it must
be evident that the first field equation (2.12) forHµ is to be complemented by a second
one which restricts the motion of matter just in such a way that the conservation laws
(2.17) do actually hold! In order to find the corresponding restriction uponHµ, one simply
substitutes the current densityjµ (2.2) into the continuity requirement (2.17) and readily
finds the following relationship between both objectsvµ andHµ

Dµvµ + i

h̄c
[H̄µ · vµ − vµ ·Hµ] = 2G. (2.18)

Here the new operatorG (‘convertor’) must obey the following algebraic constraint

I · G ≡ 0 (2.19)

in order to close the matter system [2]. This condition can easily be obeyed over the whole
spacetime by imposing upon the (Hermitian) convertorG the following equation of motion

DµG = i

h̄c
[G ·Hµ − H̄µ · G] (2.20)

which is slightly different from that for the intensity matrixI (2.10). But observe again
that the bundle identity forG

[DµDν −DνDµ]G = [Fµν,G] (2.21)

is automatically obeyed by virtue of the integrability condition (2.12).
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Summarizing the basic structure of RST we can say that the significance of the matter
current jµ lies in its ability to guarantee the existence of certain conservation laws (for
closed systems) being expressed in differential terms by the continuity equation (2.17) (the
gauge versions hereof are easily available, see [7, 8]). Thus the motion of matter under the
action of the forceFµν and simultaneous regard of the conservation laws may be described
by two steps.

(1) Determine the HamiltonianHµ, velocity operatorvµ and convertorG from their
coupled field equations (2.12), (2.18), and (2.20).

(2) Determine the intensity matrixI from its field equation (2.10) with regard of the
initial condition (2.19) (or determine the wavefunctionψ from the RSE (2.9), resp.).

As a result, one can then compute the densities1(x) (2.1) and thus one obtains all
information about the physical system under consideration.

It should have become obvious now that the velocity operatorvµ represents one of
the most significant quantities within RST, just on behalf of its close relationship with the
conservation laws of the theory. Moreover, the velocityvµ enters further important objects,
for example the energy–momentum operatorTµν which may be defined as follows

Tµν + 1
2{vµ ·Hν + H̄ν · vµ}. (2.22)

In general this operator will be asymmetric (i.e.Tµν 6= Tνµ) but its source just yields the
expected Lorentz force and this result justifies interpreting the corresponding densityTµν(x)

(2.8) as the energy–momentum density of the system. In order to see this in more detail,
compute the source ofTµν with the help of equation (2.10) and find

∇µTµν = tr

{
I ·
(
DµTµν + i

h̄c
[H̄µ · Tµν − Tµν ·Hµ]

)}
. (2.23)

Now substitute here the energy–momentum operatorTµν (2.22) and find by means of
the ‘conservation equation’ (2.18) together with the algebraic constraint (2.19) and the
integrability condition (2.12)

∇µTµν = (L)fν (2.24)

with the Lorentz force density(L)fν being given by

(L)fν = tr(I · (L)Fν) (2.25a)

(L)Fν = ih̄c

2
{vµ · Fµν + Fµν · vµ}. (2.25b)

As expected, the Lorentz force is the product of velocityvµ and field strengthFµν , albeit
in operator form. However, it should be remarked that the Lorentz result (2.25) could
be attained only by imposing two further conditions upon the velocity operatorvµ and
HamiltonianHµ, namely

Dµvν ≡ 0 (2.26a)

Dµ(vν ·Hν + H̄ν · vν) ≡ 0. (2.26b)

Combining these additional conditions with the conservation equation (2.18) we put

vµ ·Hµ = Mc21I+ ih̄cG (2.27)

and this states that any solutionψ(x) of the RSE (2.9) also satisfies the ‘Dirac equation’
(put vµ = γ µ)

ih̄vµDµψ = Mcψ. (2.28)
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Clearly, the choice (2.26a) of covariantly constant velocity operatorsvµ implies further
constraints to be satisfied. For instance, any operatorvµ must obey the bundle identity

[DµDν −DνDµ]vλ = [Fµν, vλ] − Rσλµνvσ (2.29)

which then requires

[Fµν, vλ] ≡ Rσλµνvσ (2.30)

where Rσλµν is the Riemannian curvature tensor of the underlying pseudo-Riemannian
spacetime. However, implication (2.30) can easily be satisfied by identifying the velocity
operatorsvµ with the Dirac matricesγµ generating the Clifford algebraC(1, 3), i.e. we put

vµ · vν + vν · vµ = 2gµν1I. (2.31)

As a consequence, the commutators of the velocityvµ, being defined through

6µν + 1
4[vµ, vν ] (2.32)

obey the commutation relations

[6µν, vλ] = vµgλν − vνgλµ (2.33)

and therefore provide us with a basis of the Spin(1, 3) algebra:

[6µν,6λσ ] = gνλ6µσ − gνσ6µλ + gµλ6σν − gµσ6λν. (2.34)

Therefore we merely need to conceive the forceFµν to be the sum of its gravitational part
(Rσλµν) and other gauge interactionsFaµν)

Fµν = 1
2Rλσµν6

λσ + Faµντ a
([vµ, τ

a] = 0)
(2.35)

and then constraint (2.30) is automatically satisfied.
Although the preceding considerations show that the ordinary Dirac theory isonly one

special realization of the general RST, the significance of the velocity operatorsvµ within
the general framework of RST should have become clear now. Evidently, the existence
of conservation laws is closely related to those matter currentsjµ induced by the velocity
operatorvµ. But the striking point with RST is now that there areadditional conservation
laws which are not related to the matter currents but are of topological origin! How does
this occur? Observe here the general structure of RST which is composed of two distinct
building blocks:

(1) There is the level ofoperators(obeying the corresponding dynamical equations, e.g.
(2.12), (2.18), or (2.20)).

(2) There is the level ofdensities(being constructed from the corresponding operators
by means of the intensity matrixI or wavefunctionψ , e.g. (2.2), (2.5), or (2.8)).

The crucial point with this subdivision is now that the matter currents and associated
conservation laws discussed so far are living on the second level, the level (ii) of densities,
whereas the topological currents are already emerging on the first level (i) of operators
which is surely the more fundamental one. This means that the physical densities do
not influence the topological currents at all though these densities represent the specific
spacetime distribution of matter.

Let us now see how the HamiltonianHµ manages to directly build up some current
(hµ, say) without any reference to the densities.
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3. Topological currents

The existence of such objects as the HamiltonianHµ and curvatureFµν , transforming
homogeneously under a change of gaugeS

H′µ = S−1 ·Hµ · S (3.1a)

F ′µν = S−1 · Fµν · S (3.1b)

gives immediate rise to introduce a new kind of current densityhσ :

hσ = −2iεµνλσ tr

(Hµ ·Hν ·Hλ
(h̄c)3

+ 3

2

Hµ
h̄c
· Fνλ

)
. (3.2)

In constrast to the Chern–Simons form [9] the present currenthσ is gauge invariant but it
has the same source

∇σ hσ = 3
2ε
µνλσ tr(Fσµ · Fνλ). (3.3)

This is readily verified byexclusive use of the integrability condition (2.12), i.e. the
conservation equation (2.18) is not needed here.

Observe that the source of the complex currenthσ is itself real (the curvature is taken
to be anti-Hermitian, i.e.F̄µν = −Fµν). This implies that if we decompose both the new
current and the Hamiltonian into its real and imaginary parts

hσ = tσ + izσ (3.4a)

Hµ = h̄c(Kµ + iLµ) (3.4b)

we find the real part ofhµ (3.2) being built up by the kinetic fieldKµ and the localization
field Lµ in the following way

tσ = −2iεµνλσ tr(Kµ ·Kν ·Kλ − 3Lµ · Lν ·Kλ + 3
2Kµ · Fνλ) (3.5)

and analogously for the imaginary partzσ :

zσ = 2iεµνλσ tr(Lµ · Lν · Lλ − 3Lµ ·Kν ·Kλ − 3
2Lµ · Fνλ). (3.6)

Clearly, the real source ofhµ must now be due to its real parttσ , i.e.

∇σ tσ = 3
2ε
µνλσ tr(Fσµ · Fνλ) (3.7)

whereas the imaginary partzσ is then necessarily found to be sourceless

∇σ zσ ≡ 0. (3.8)

This may also be checked separately by splitting up the integrability condition (2.12) into
its (anti-)Hermitian parts

DµKν −DνKµ + i[Kµ,Kν ] − i[Lµ,Lν ] = iFµν (3.9a)

DµLν −DνLµ + i[Kµ,Lν ] − i[Kν,Lµ] = 0 (3.9b)

and using these relations for differentiating both currentstσ (3.5) andzσ (3.6).
It is important to remark here that for the validity of the source relation (3.3), or

equivalently for (3.7) and (3.8), nothing else is needed except the integrability condition
(2.12). Especially, there is no need to use the conservation equation (2.18) (or its
descendants) which was so crucial for those conservation laws based upon the matter
currentsjµ (2.2). Furthermore, the new conservation law (3.8) does not either refer to
the intensity matrixI but completely relies upon the use of the kinetic and localization
fields and nothing else. Thus it becomes evident that the new continuity equation (3.8) is
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of quite a different nature than the former type (2.17). This readily becomes more evident
by turning to the topological viewpoint. Defining the 3-form∗z

∗z = 1

3!
zµνλdx

µ ∧ dxν ∧ dxλ (3.10)

as the (Poincaré) dual of the 1-formzµ, i.e.

zµνλ = εµνλσ zσ

zλ = 1

3!
ελ
µνσ zµνσ

(3.11)

the new continuity equation (3.8) reads

d∗z = 0 (3.12)

and this reveals the 3-form∗z as an element of deRham’s cohomology algebraH 3

over spacetime [10]. The reason is that the corresponding cohomology class is actually
independent of the kinetic fieldKµ and the curvatureFµν . Therefore it is only the
localization field Lµ which determines that cohomology class. Thus,∗z becomes
comparable with the concept of characteristic classes in differential topology [11].

In order to see this in more detail, we eliminate the curvatureFνλ from the topological
currentzσ (3.6) in favour of the kinetic and localization fields by means of equation (3.9a)
and find

zσ = 8iεµνλσ tr(Lµ · Lν · Lλ)− 6∇ν [εµνλσ tr(Lµ ·Kλ)]. (3.13)

Or, in terms of the dual objectzµνλ (3.11) this result reads

zµνλ = −24i tr[Lµ · Lν · Lλ − Lλ · Lν · Lµ] − 6[∇µfνλ +∇νfλµ +∇λfµν ] (3.14)

where the 2-formf = 1
2fµνdx

µ ∧dxν is composed of the kinetic and localization fields as
follows

fµν = tr[Lµ ·Kν − Lν ·Kµ]. (3.15)

As a consequence, the essential partΛ of ∗z is always independent of the curvatureFµν ,
i.e. we put

∗z = 8Λ− 3df

(Λ + −i tr(Lµ · Lν · Lλ)dxµ ∧ dxν ∧ dxλ)
(3.16)

and then the periodnz of ∗z upon some 3-cycleC3 of spacetime (with∂C3 = ∅) is
influenced only by the localization fieldLµ alone:

48π2nz =
∮
C3

∗z = 8
∮
C3

Λ. (3.17)

Observe here Stokes’ theorem∮
C3
df =

∮
∂C3
f = 0. (3.18)

Via integral (3.17), the localization fieldLµ associates a topological invariantnz to the
3-cycleC3 so thatnz is zero for those cases where the localization field commutes with
itself:

[Lµ,Lν ] = 0 (3.19)

as was adopted in some preceding papers [12, 13]. Of course, non-trivial topological
numbers (3.17) can arise only for spacetime manifolds whose Betti numberb3 (of third
order) is non-zero:b3 > 1 (Poincaŕe’s lemma).
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Finally, let us remark that the real parttσ (3.5) of the complex currenthσ (3.2) is not
so irrelevant as it may appear now through the preceding investigation of the topological
currentzσ . In fact there are many instances, where the source oftσ vanishes (cf (3.7)):

εµνλσ tr(Fσµ · Fνλ) ≡ 0 (3.20)

although the curvatureFµν is different from zero (see the example below). For such a
situation the currenttσ also obeys a continuity equation

∇µtµ ≡ 0 (3.21)

which in turn yields a further topological numbernt via the analogue of equation (3.17)

48π2nt =
∮
C3

∗t. (3.22)

In general, both periodsnz andnt will be different from one another upon the same cycle
C3 and each of these numbers will adopt different values upon 3-cycles which are not
homologous to each other.

But in any case, if the source equation (3.7) is rewritten in the language of forms

d∗t = (3!) tr(F ∧F)
(F + 1

2Fµνdx
µ ∧ dxν) (3.23)

we immediately see that the 4-formf (= d∗t) on the right of this equation is exact

dF ≡ 0

(F = (3!) tr(F ∧F)). (3.24)

For the tangent bundle of our pseudo-Riemannian spacetime, this exact 4-formF (=
1
4!Fµνλσdx

µ ∧ dxν ∧ dxλ ∧ dxσ ) is specialized into

Fµνλσ ≡ (3!) tr(F[µν · Fλσ ])⇒ (3!)2

2
Rρκ[µνRλσ ]

ρκ (3.25)

a result which has been known for a long time [14–16].
It may be instructive now to see how all these new concepts work in detail by considering

a specific example.

4. Example: Dirac matter in Robertson–Walker universe

As mentioned above, RST as a quantum dynamical system is based upon the two
fundamental concepts ofoperators and densities. The matter currents have been
demonstrated to be special examples of densities but the two-level structure of RST has
enabled us to construct topological currents also directly by exclusive use of the operators
(i.e. with dispense of the intensity matrixI). Furthermore, besides that two-level structure
of the theoretical concepts, there also exists a similar subdivision for the quantum-dynamical
equations: integrability condition (cf (2.12)) andconservation equation(cf (2.18)). This
double duality (between operators and densities on the one hand and between ‘integrability’
and ‘conservation’ equations on the other hand) has some bearing upon the continuity
equations obeyed by both types of currents. Whereas the matter currents rely mainly upon
the conservation equation, the topological currents rely only upon the integrability condition.
Surely, it would be very helpful now to consider a non-trivial example where both types of
currents can be constructed explicitly and compared with one another.
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4.1. Robertson–Walker universe

To this end, we consider the Dirac theory of spinning matter over a Robertson–Walker (RW)
universe. The corresponding line element of the RW geometry is given by

ds2 = gµνdxµdxν = dθ2−R2dl2 (4.1)

whereθ denotes the cosmic time,R is the scale parameter (‘radius’ of the universe), and
dl is the spatial line element on the 3-surfaces of homogeneity and isotropy (θ = constant).
Further geometric quantities are: the Hubble expansion rateH (= Ṙ/R), the Hubble flow
vectorbµ (= ∂µθ ) which is normalized to unity

bµbµ = 1 (4.2)

and its orthogonal projectorBµν which simultaneously plays the part of the surface metric

gµν = Bµν + bµbν ≡ BαµBαν (4.3a)

Bµνb
ν = 0 (4.3b)

BµνB
ν
λ = Bµλ (4.3c)

Bµµ = 3. (4.3d)

The Riemannian curvature tensor may now be expressed in terms of these objects as [17]

Rλσµν =
(
H 2− σ

R2

)
[gσµgλν − gσνgλµ]

+
(
Ḣ + σ

R2

)
[gσµbλbν − gσνbλbµ + gλνbσ bµ − gλµbσ bν ] (4.4)

whereσ is the usual topological index (σ = −1: closed,σ = 0: flat, σ = +1: open
universe).

Associated to the Levi–Civita connectionΓ of the Riemannian metricg (4.3a) is the
spin connectionA

Aµ = 1
2Aαβµ6̂

αβ = 1
2Aλσµ6

λσ (4.5)

(6̂αβ = BαµBβν 6µν) (4.6)

which takes its values in the Lie algebra of Spin(1, 3). The corresponding curvatureFµν
of the RW universe is given by

Fµν = 1
2Rλσµν6

λσ

=
( σ
R2
−H 2

)
6µν +

( σ
R2
+ Ḣ

)
bλ[6µλbν −6νλbµ]. (4.7)

But for this specific curvature it is easy to prove by means of a little bit of Clifford algebra
(cf also (3.25))

tr(F[µν · Fλσ ]) ≡ 0 (4.8)

and therefore the continuity equation (3.21) for the real counterparttσ (3.5) of the topological
currentzσ will additionally hold.

4.2. Hamiltonian

Now that the relevant geometric preliminaries have been specified, one can next go on to
determine the HamiltonianHµ from the integrability condition (2.12). But for the sake of
simplicity, we do not want to compute here the most generalHµ for given RW-curvature
Fµν (4.7) but we are satisfied with a subclass of solutions which reflect the RW-symmetry
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of the background geometry. Thus, our ansatz for theGL(4,C)-valued HamiltonianHµ
(⇒ (a)Hµ) is

1

h̄c

(a)Hµ = {g1I+ g̃ε +G(bλγλ)+ G̃(bλγ̃λ)}bµ −
{(
W − m

4

)
γ λ + W̃ γ̃ λ

}
Bλµ

−i{N6µλ + Ñ∗6µλ}bλ. (4.9)

Here, the ansatz parametersg, g̃, G, G̃, W , W̃ , N , Ñ are complex homogeneous scalar
fields over spacetime and therefore may be split up into real and imaginary parts as follows

g = gr + igc g̃ = g̃r + ig̃c

G = Gr + iGc G̃ = G̃r + iG̃c

W = Wr + iWc W̃ = W̃r + iW̃c

N = Nc − iNr Ñ = Ñc − iÑr .

(4.10)

Moreover, the 4× 4 = 16 generators of the algebraGL(4,C) have been specified as 1I,
ε (= 1

4!εµνλσ γ
µγ νγ λγ σ ), γ µ, γ̃ µ (= εγ µ), and6µν (= 1

4[γµ, γν ]). Observe here that the
dual ∗Σ of Σ is only a linear combination of the Spin(1, 3)-generatorsΣ but not a new
element of the Clifford algebraC(1, 3):

∗6µν = −ε6µν = 1
2εµν

λσ6λσ . (4.11)

Let us remark also that the present ansatz(a)Hµ (4.9) is a slight generalization of the former
Hamiltonian(s)Hµ
1

h̄c

(s)Hµ = m

4
γµ + 3

2
ibµ(N1I− Ñε)+ (4bµbλ − gµλ)(W1I+ W̃ε)γ λ

−ibλ(N6µλ + Ñ∗6µλ) (4.12)

which was used in a previous paper [13]. Evidently that special(s)Hµ (4.12) is recovered
from the more general(a)Hµ (4.9) by putting

g ⇒ 3
2iN

g̃ ⇒ − 3
2iÑ

G⇒ 3W + m
4

G̃⇒ 3W̃ .

(4.13)

The topological significance of this simplification process will readily become obvious.

4.3. Topological current

As soon as the HamiltonianHµ is known, one can construct the complex currenthµ (3.2) in
a purely algebraic manner irrespective of what kind of differential equation is obeyed byHµ.
Clearly, the source equation (3.3) is then satisfied only after one has additionally subjected
the Hamiltonian to the integrability condition (2.12). Therefore let us first construct the
currenthµ and discuss afterwards the implications of the integrability condition.

Introducing our special Hamiltonian ansatz(a)Hµ (4.9) into the general definition of the
currenthµ (3.2) yields the following result (by means of a little bit of Clifford algebra)

hσ ⇒ (a)hσ = h̃bσ (4.14)
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with the complex homogeneous scalar fieldh̃ being given in terms of the ansatz scalars
(4.10) as

h̃ = 6Ñ

{
Ñ2− 3N2− 12W̃ 2− 12

(
W − m

4

)2
+ 3

(
H 2− σ

R2

)}
. (4.15)

Thus the complex currenthµ is found to be proportional to the Hubble flowbµ and it
vanishes whenever the ansatz parameterÑ is zero. Moreover, the prefactor̃h (4.15) is
completely independent of the ansatz parametersg, g̃, G, G̃ and therefore the currenthµ
is the same for a whole class of Hamiltonians. As we shall see below, this class character
of hµ will not be spoiled by incorporating the integrability condition (2.12) and this result
renders the topological currentzσ comparable with the well known characteristic classes
in differential topology which are constructed by means of the curvatureFµν in place of
the HamiltonianHµ [18, 19]. One could now decompose the present result(a)hµ (4.14)
into the real and imaginary partstσ , zσ (3.4a), but it is more convenient to first apply the
integrability condition because this will yield a further simplification.

4.4. Integrability condition

In order for solutionsψ(x) for the RSE (2.9) to actually exist, the HamiltonianHµ must
obey the integrability condition (2.12). Moreover, this condition also ensures the validity of
the source equation forhµ (3.3). But observe that this isnot sufficientfor the validity of the
Dirac equation (2.28) which itself would then imply also the conservation law (2.17) for the
matter currentjµ (2.6). However, the integrability condition (2.12)is sufficient to guarantee
the topological conservation law (3.8). This assertion may be checked immediately by
introducing our Hamiltonian ansatz(a)Hµ (4.9) into that integrability condition with the
curvatureFµν being due to the RW case (4.7). With a little bit of Clifford algebra, this
yields two kinds of equations for the four Hamiltonian coefficientsW , W̃ , N , Ñ , namely
their equations of motion and certain algebraic constraints among them. Here, the dynamical
equations read

Ẇ = −H
(
W − m

4

)
− (N +H)G+ 2ig̃W̃ (4.16a)

˙̃
W = −HW̃ − (N +H)G̃− 2ig̃

(
W − m

4

)
(4.16b)

˙̃
N = −HÑ (4.16c)

Ṅ + Ḣ + σ

R2
= (N +H)N + 4

(
W − m

4

)2
+ 4W̃ 2+ 4G

(
W − m

4

)
+ 4G̃W̃ − Ñ2.

(4.16d)

Similarly, the algebraic constraints are found as

Ñ
(
W − m

4

)
= 0 (4.17a)

ÑW̃ = 0 (4.17b)

Ñ(N +H) = 0 (4.17c)

Ñ2 = − σ

R2
+ (N +H)2+ 4

(
W − m

4

)2
+ 4W̃ 2. (4.17d)

Let us first discuss the latter set of algebraic equations. If we want to have a non-trivial
current (a)hµ (4.14), (4.15), then we obviously have to chooseÑ 6= 0. But this then fixes
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the other ansatz scalars in (4.17) as

W = m

4
(4.18a)

W̃ = 0 (4.18b)

N = −H (4.18c)

Ñ = ±√−σ 1

R . (4.18d)

(Convince yourself that this special solution is actually admitted by the dynamical equations
(4.16).) But with this result the complex current(a)hµ (4.14) becomes

(a)hµ ⇒ ∓24σ
√−σ 1

R3
bµ. (4.19)

As a check it is easily verified here that the source equation forhµ (3.3) is actually satisfied
because: (i) for the present RW case the source ofhµ vanishes (cf (3.20)) and (ii) the
derivative of the Hubble flowbµ is given by

∇µbν = HBνµ (⇒ ∇µbµ = 3H) (4.20)

with H being just the Hubble expansion rate (Ṙ/R).
Finally let us compute the topological quantum numbersnz (3.17) andnt (3.22). For

a flat universe (σ = 0) the current(a)hµ (4.19) vanishes trivially. For an open universe
(σ = +1), the real parttσ (3.4a) vanishes and the topological currentzσ becomes

(a)zµ = ∓ 24

R3
bµ

(σ = +1).
(4.21)

However, since the open universe is equipped with the ordinaryR4 topology, any two 3-
cyclesC3 can be continuously deformed into one another without changing the topological
numbernz. Thus,nz must always be zero in open and flat universes (let one of the 3-cycles
shrink to a point). This is equivalent to the fact that the (Poincaré) dual∗z (3.10) of the
exact 1-form(a)zµ (4.21) is also exact.

But clearly for a closed universe (σ = −1) the dual∗z of the closed 1-form(a)zµ (4.21)
would not be exact but here the imaginary partzµ of (a)hµ (4.19) vanishes trivially and
therefore we are again left with a vanishing quantum numbernz. However, forσ = −1 the
real part (a)tµ becomes

(a)tµ = ± 24

R3
bµ

(σ = −1)
(4.22)

and thus is formally the same as the topological current (4.21) in the open universe. But in a
closeduniverse the dual of the closed 1-form(a)tµ (4.22) is not exact and the corresponding
topological number (3.22) becomes

48π2nt =
∮
C3

∗t =
∮
θ=constant

(a)tµ dSµ = ±48π2(
dSµ = bµ dS,

∮
θ=constant

dS = 2π2R3

) (4.23)

which yieldsnt = ±1.
This result simultaneously suggests that the topological numbernz (3.17) (andnt (3.22)

for the special case of vanishing source (3.20)) will always be found as an integer. Observe
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here that our original Hamiltonian ansatz(a)Hµ (4.9) contained eight complex parameters
and one should have expected that these eight variables occur also in the complex currenthµ.
Instead, the corresponding current(a)hµ (4.14) was built up by only four ansatz parameters
(W , W̃ , N , Ñ ). This means that a four-dimensional manifold of Hamiltonians(a)Hµ (being
parametrized byg, g̃, G, G̃) collapses into a single current(a)hµ. Further reduction of the
field degrees of freedom occurred by applying the integrability condition (2.12) which left
the unique current (a)hµ (4.19), which of course must then be a RW-symmetric 1-form.
But it is just this collapse of a wide variety of HamiltoniansHµ into a single currenthµ
which is to be expected when the topological numbers are emerging as integers. In this
way the total set of HamiltoniansHµ, as solutions of the integrability condition (2.12), will
form discrete ‘classes’ being characterized by those topological numbers. In this sense, our
Hamiltonian(a)Hµ (4.9) represents the RW-symmetric class which has topological numbers
nt = 0,±1 andnz = 0.

4.5. Matter current

Is there any relationship between the topological and matter currents? Especially, for the
present RW-symmetric field configuration one would expect that the matter currentjµ
(2.2) also adopts the corresponding RW-symmetric form and would then look just like the
topological counterparts(a)zµ (4.21) or (a)tµ (4.22). One could think now that in order to
check these suppositions one would first have to determine the intensity matrixI from its
field equation (2.10) (resp. to determine the wavefunctionψ from the RSE (2.9)) before
one can construct the matter currentjµ according to (2.2) (or according to (2.6), resp.).
However, this would be a difficult task and it is better to resort to a simpler procedure.

In fact, if we want to get some information about the matter currentjµ we do not
necessarily need to know its explicit form but we may be content to have its field equation.
If the topological currents do not obey that field equation for the matter current, both types of
current can never be identical (although anyone of them obeys the corresponding continuity
equation). Therefore suppose for the moment that the matter currentjµ would also be of
the RW-symmetric form, i.e.

jµ = Ibµ
(I

.= jµbµ).
(4.24)

Since homogeneity requires the scalarI to depend exclusively upon the cosmic timeθ
(rememberbµ = ∂µθ ) we find the following field equation for any RW-symmetric current
(4.24) (cf (4.20)):

∇µjν = İ bµbν + IHBνµ(
İ
.= dI

dθ

)
.

(4.25)

On the other hand, the derivative of the matter currentjµ follows also by direct
differentiation of its defining equation (2.2) (or (2.6), resp.) and by using the field equation
for the intensity matrixI (2.10) (or using the RSE (2.9), resp.):

∇µjν = i

h̄c
tr(I · [H̄µ · γν − γν ·Hµ]). (4.26)
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Introducing here our special Hamiltonian ansatz(a)Hµ (4.9) readily yields

∇µjν = 2g̃rbµj̃ν − 2ρ̃G̃cbµbν + 8Grbµb
λSλν + 2gcbµjν + 2ρGcbµbν

−8G̃rbµb
λ∗Sλν +Nc[jµbν − Igµν ] + Ñcjρερµλνbλ.(

Sµν
.= i

2
tr
(
I ·6µν

)
,∗ Sµν = i

2
tr(I · ∗6µν)

)
.

(4.27)

But this result is never symmetric (∇µjν 6= ∇νjµ) and therefore it cannot coincide with the
previous supposition (4.24).

As a consequence, we conclude that in general the topological and matter currents will
be quite different objects which are equipped with a rather different meaning within the
framework of RST. Whereas the physical significance of the matter currentsJν as the
sources for the gauge fieldFµν is clear [7, 8], the physical role of the topological currents
remains to be clarified.

5. Matter densities

Hitherto we have carefully kept the matter currents apart from the topological currents.
Therefore it may appear now as a surprise that we go to establish an intimate link between
the topological currentzµ and the intrinsic matter densities1a(x)

1a(x) = tr(I(x) · δa)
(a = 1 . . . N2)

(5.1)

whereδa (= δ̄a) areN2 fixed Hermitian operators over fibre spaceCN . Why does one want
to have such a link between the topological quantities and the matter densities?

The motivation comes from some of the results of the preceding example. Remember
here the fact that for the open universe (σ = +1) we got a non-trivial topological current
(a)zµ (4.21) whose periods on any 3-cycleC3, however, had to vanish. The reason for this is
that the 3-distribution orthogonal to(a)zµ integrates toopen3-surfaces (θ = constant) which
extend up to spatial infinity. Obviously, non-trivial periods ofzµ could have been obtained
if the corresponding 3-surfaces would have been compact. But on the other hand, the
closed universe (σ = −1) did not admit a non-trivial currentzµ, such as, for example(a)tµ
(4.22) which implies some non-trivial quantum numbernt (4.23). These strange results
find their natural explanation by evoking the matter densities1a(x) (5.1) associated to
the corresponding field configurations. Observe here that for a given configurationI(x)
(or ψ(x), resp.) the prescription (5.1) defines some embedding of spacetime{x} into the
density space{1}: x 7→ 1(x) (more precisely we deal with a sectionI(x) of the bundle
of densities over spacetime as the base space). But this density image of spacetime will
in general carry a topology different from that of spacetime itself because any two events
collapse into one single point in density space whenever they carry the same densities1.
Considering now the pullback (with respect to the density mapx → 1) of some 3-form
over density space{1} we immediately see that the integral surfaces ofΛ do inherit their
topology from that density image of spacetime. Thus the periods ofΛ on the 3-cyclesC3 of
spacetime reflect the density topology which in this way becomes the object of our interest.

Deferring some concrete example for this mechanism to the next section, we first have
to say some words here about the density mapx → 1 and its pullback formLµ.

In order to find the desired relationship between the intensity matrixI (as the collection
of the intrinsic densities) and the localization fieldLµ, we first change the connectionAµ
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(2.16) into
◦
Aµ by means of the kinetic fieldKµ (3.4b) according to

◦
Aµ= Aµ + iKµ (5.2)

and then we recast the equation of motion forI (2.10) into the following form
◦
Dµ I = I · Lµ + Lµ · I
(
◦
Dµ I

.= ∂µI + [
◦
Aµ, I]).

(5.3)

Consequently, any solutionI(x) of (5.3) yields the desired density mapx → 1 and enables
us to express the localization fieldLµ in terms of the matter densities.

The curvature
◦
F µν of the new connection

◦
Aµ has some interesting properties. First

observe, that the new curvature
◦
F µν is expressed in terms of the oldFµν (2.16) as

◦
F µν = Fµν + i(DµKν −DνKµ)− [Kµ,Kν ]. (5.4)

Next remember the Hermitian part of the integrability condition (3.9a) and find
◦
F µν = −[Lµ,Lν ]. (5.5)

Thus, non-trivial topological numbersnz (3.17) will emerge only for non-vanishing curvature
◦
F µν ! Moreover, the anti-Hermitian part of the integrability condition (3.9b) may be
reformulated as

◦
Dµ Lν−

◦
Dν Lµ = 0 (5.6)

so that the Bianchi identity for the new curvature
◦
F µν is immediately seen to be valid

◦
Dµ

◦
F νλ+

◦
Dν
◦
F λµ+

◦
Dλ
◦
F µν ≡ 0 (5.7)

together with the closedness of the 3-formΛ (3.16). Finally let us remark also that the
present results (5.3), (5.5) and (5.6) are consistent with the bundle identity for the intensity
matrix I, i.e.

[
◦
Dµ

◦
Dν −

◦
Dν
◦
Dµ]I = [

◦
F µν, I]. (5.8)

After one is convinced now that the crucial relationship (5.3) between the matter and
the topological objects is consistent, one can turn to the discussion of the corresponding

solutionsI(x) for a given connection
◦
Aµ and localization fieldLµ. Here it is interesting

to observe that similarly the following types of equations also lead to the desired solutions:

type I:
◦
Dµ LI = Lµ · LI + LI · Lµ (5.9a)

type II:
◦
Dµ LII = Lµ · LII − LII · Lµ (5.9b)

type III:
◦
Dµ LIII = −Lµ · LIII + LIII · Lµ (5.9c)

type IV:
◦
Dµ LIV = −Lµ · LIV − LIV · Lµ. (5.9d)

Clearly, the Hermitian part of any type-I solution is a possible intensity matrix, i.e.

I ⇒ LI + L̄I . (5.10)

Similarly, the product of a type-I solution with type II or type III also yields solutions of
the original equation (5.3)

I ⇒ LII · L̄I + LI · L̄II (5.11a)

I ⇒ L̄III · LI + L̄I · LIII . (5.11b)
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Or even combinations without presence ofLI are possible, for example

I ⇒ L̄III · L̄−1
IV + L−1

IV · LIII . (5.12)

Moreover, the intensity matrixI may be built up of products of higher orders.

A special case is encountered when the modified curvature
◦
F µν (5.5) vanishes, i.e.

when the localization fields are commuting (cf (3.19)). In this case, the matrix amplitude
L may also be determined from the following equation

◦
Dµ L = Lµ · L (5.13)

with the intensity matrixI being built up byL according to

I ⇒ L · L̄. (5.14)

This construction yields a non-negative matrixI, provided the typical fibreCN is equipped
with a strictly Hermitian form (i.e.ψ̄ ·ψ > 0). However, within the present context of RST
it seems unnecessary to exclude negative eigenvalues forI and therefore the more general
forms (5.11), (5.12) forI may be admitted.

Finally, let us mention also the fact that the equation of motion for the convertorG
(2.20) is rewritten in terms of the new connection

◦
Aµ (5.2) as

◦
Dµ G = −G · Lµ − Lµ · G (5.15)

i.e. the type-IV solutionLIV (x) (5.9d) can be taken as theG-field

G ⇒ LIV + L̄IV . (5.16)

The generalizations hereof by building products again should be self-evident.

6. Example: Scalar Higgs doublet over RW universe

Recently [17], cosmological solutions for the coupled EYMH equations were presented but
the results did not admit RW-symmetric solutions with non-vanishing topological numbernz
over a closed universe [2]. In other words, one could not get solutions with non-commuting
localization fields: [Lµ,Lν ] 6= 0 (see the remarks concerning equations (3.19) and (5.5)).
As strange as this negative outcome may appear, it now finds its natural explanation within
the present topological framework. In short, the point lies again in the fact, that the density
image of spacetime is topologically trivial so that the pullback of the density map cannot
generate closed 3-surfaces.

In order to see this effect in detail, let us first consider the general formalism for a
SU(2) bundle and then apply the result to the present EYMH problem.

For fibre dimensionN = 2, the (Hermitian) intensity matrixI can be expanded with
respect to unity (1I) and the Pauli matrices (σ j ) according to

I = 1
2(ρ1I− sjσ j ) (6.1)

so that the intrinsic densities are given by

ρ = tr I (6.2a)

sj = gjksk = tr(I · σ j ) (6.2b)

(gjk = diag(−1,−1,−1)).

(6.2c)
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Figure 1. Density configuration space forN = 2. The Fierz coneCF (6.3) cannot be traversed
during the time evolution (2.10) of the intensity matrixI (6.1).

Thus, the density configuration space is a four-dimensional manifold parametrized by the
‘coordinates’{ρ, sj }, and the Fierz identity (2.4) reads

ρ2− s2 = 0

(s2 .= −sj sj )
(6.3)

which defines a 3-cone in this space (‘Fierz cone’ CF , figure 1). One can now easily
show that with respect to the density mapx 7→ {ρ(x), sj (x)}, given by some solution of
(5.3), the spacetime manifold is mapped either into the interior (ρ2 − s2 > 0) or into the
exterior (ρ2 − s2 < 0) of the Fierz cone, i.e. the density image{ρ(θ), sj (θ)} of any curve
x = x(θ) of spacetime can never traverse the Fierz cone [8]. (This strongly reminds us of
the analogous situation in special relativity where the light cone can never be traversed by
a real particle world-line.) For the sake of simplicity, we restrict ourselves to the ‘future’
Fierz cone:ρ > s.

In the next step of our programme, we explicitly have to compute the pullback fieldLµ
due to the density map. To this end we decompose the localization fieldLµ similarly as
the intensity matrixI (6.1), i.e.

Lµ = Lµ1I+ Ljµσ j . (6.4)

Equation (5.3) then yields for the localization coefficients in terms of density derivatives

∂µρ = 2(ρLµ + sjLjµ) (6.5a)
◦
Dµ sj = −2(ρLjµ − sjLµ). (6.5b)

On the other hand, the desired 3-formΛ (
.= 1

3!3µνλdx
µ ∧ dxν ∧ dxλ) in (3.16) is obtained

as

3µνλ = −12εjklLjµLkνLlλ (6.6)

and this naturally suggests reformulatingΛ in terms of the density derivatives (6.5) in order
to identify the desired 3-distribution in density configuration space.

For that purpose it is very convenient to introduce the unit fibre elementŝj according
to

ŝj = s−1sj

(ŝj ŝj = −1).
(6.7)
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By means of this unit vector, one can split up all the SO(3) objects into their longitudinal
and transverse parts, for example

Ljµ = −ŝj (ŝjLjµ)+ (⊥)Ljµ
.= −ŝj

_

Lµ +(⊥)Ljµ. (6.8)

For the derivative of the unit vector̂sj (6.7) we then have

◦
Dµ ŝj = −2

ρ

s

(⊥)Ljµ

( ŝj
◦
Dµ ŝj ≡ 0).

(6.9)

Furthermore, the unit section̂sj can be used for the construction of an SO(2) reduction of

the original SO(3) bundle. Thus, decomposing the curvature
◦
F µν (5.5) with respect to the

SU(2) generatorsτ j

◦
F µν =

◦
Fjµν τ

j(
τ j = − i

2
σ j
) (6.10)

the corresponding curvature coefficients are found as
◦
Fjµν= 4εj

klLkµLlν (6.11)

and may be used to construct the curvatureF̂µν of the reduced SO(2) subbundle as follows

F̂µν = ŝj
◦
Fjµν +εjkl ŝj (

◦
Dµ ŝk)(

◦
Dν ŝl). (6.12)

As a check, the SO(2) curvature again must obey the Bianchi identity

∇λF̂µν +∇µF̂νλ +∇νF̂λµ ≡ 0 (6.13)

which is, however, easily verified by evoking the SO(3) bundle identity

[
◦
Dµ

◦
Dν −

◦
Dν

◦
Dµ]ŝj ≡ εj kl

◦
Fkµν ŝl . (6.14)

For our present context, the topological significance of the reduced bundle curvature
F̂ = 1

2F̂µνdx
µ ∧ dxν lies in the fact that it simultaneously represents a characteristic class

of that SO(2) bundle: the Euler class [10]. Consequently, if we consider some 2-cycleC2

of spacetime which encloses the world-line of an isolated zero (sj = 0) of the sectionsj (x)
we obtain the Poincaré–Hopf indexnH of that zero by means of the period ofF̂ uponC2:

nH =
∮
C2
F̂ (6.15)

(figure 2). If the 2-cycleC2 encloses more than one world-line, integral (6.15) yields the
sum of the individual Hopf indices. For our present SO(3) bundle the Hopf index of the
zeros of the sectionsj (x) is quantized in units of 4π : nH = 4πn, n = 0, ±1, ±2, . . ..

The point with the Euler clasŝF of the subbundle is now that the desired 3-formΛ
(6.6) can be expressed in terms of this object: one merely applies the splitting (6.8) into
the transverse and longitudinal parts, eliminates the transverse part(⊥)Ljµ in favour of the
density derivative (6.9) and finds

εjklLjµLkνLlλ = −1

4

s2

ρ2− s2
{_Lµ F̂νλ+

_

Lν F̂λµ+
_

Lλ F̂µν}. (6.16)
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µ xµ=x ( )τ

2

C3

C3

C

C

C3

2

Figure 2. Poincaŕe–Hopf index and boundary conditions. The closed 2-surfaceC2 surrounds
the world-linexµ = xµ(τ) of some isolated zero of the sectionsj (x) (τ : proper length of the
world-line). The Hopf indexnH (6.15) remains invariant through shiftingC2 along the world-
line. Non-trivial values (6.21) of the topological numbernz are obtained when the projective
coordinates/ρ tends to a constant at spatial infinity (shaded area).

Furthermore, the longitudinal part
_

Lµ (6.8) still occurring here is expressed in terms of the
density derivatives as

_

Lµ= 1

2

1

1−
(
s
ρ

)2∂µ

(
s

ρ

)
. (6.17)

Therefore we can finally eliminate the longitudinal part
_

Lµ from result (6.16) in favour of
the density derivatives and then finally end up with the desired 3-formΛ as

3µνλ = 3{aµF̂νλ + aνF̂λµ + aλF̂µν} (6.18)

with the gradient fieldaµ ≡ ∂µa being determined by the scalar functiona through

a = 1

4

 s
ρ

1−
(
s
ρ

)2 −
1

2
ln

1+ s
ρ

1− s
ρ

 . (6.19)

Thus the result for the desired 3-formΛ (3.16) finally becomes

Λ = 3(da) ∧ F̂ = 3d(aF̂ ) (6.20)

and Λ is revealed for the present case of fibre dimensionsN = 2 as anexact 3-form.
As a consequence, the topological numbernz (3.17) must always be zero for the present
case (N = 2). Evidently, the reason for this result is thatΛ is the pullback (from density
space to spacetime) of some 3-form over the topologically modified density configuration
space. Since the functiona (6.19) exclusively depends upon the ratios/ρ, this modification
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consists of converting the interior (ρ > s) of the ‘future’ Fierz cone (6.3) into some non-
compact submanifold of projective 3-space equipped with the ‘volume’ 3-formΛ (6.20).
Naturally, the integral surfaces of the pullback ofΛ must then also be non-compact 3-
surfaces (e.g. extending to spatial infinity) which implies the vanishing of the topological
numbernz (3.17). Non-trivial values may only be obtained if integral (3.17) is taken over
some non-compact 3-surfaceC3 extending to spatial infinity where the boundary condition
a→ a∞ = a(s∞/ρ∞) is to be imposed (figure 2):∫

C3

Λ⇒
∮
C2
F̂ ·

∫ a∞

0
da = 4πna∞. (6.21)

7. Einstein–Yang–Mills–Higgs system

As a concrete demonstration of the preceding general results concerning SU(2) bundles,
we consider now the RW-symmetric solutions of the coupled EYMH equations [2, 17].
Especially, we want to inspect whether the topological numbernz (3.17) really vanishes on
account of the non-compactness of the corresponding pullback 3-surfaces (cf the remarks
at the beginning of section 5).

The Yang–Mills part of the total EYMH system reads†

DµFµν = 4παJν(
α = g2

h̄c
. . . ‘fine-structure constant’

) (7.1)

or after decomposition with respect to some suitable basis{τ j } of the SU(2) algebra
(Jν = jkντ k, etc)

DµFkµν = 4παjkν

(Dµjkν
.= ∇µjkν + εkjlAjµjlν).

(7.2)

Now the only possible form for the curvatureFµν , being consistent with the RW-symmetry,
reads

Fµν = −1

4
f‖[Bµ,Bν ] + i

2
f⊥[bµBν − bνBµ] (7.3)

wherebµ is again the Hubble flow (4.2) andBµ (
.= Bjµσ j ) denotes theSU(2)-valued space

part of the tetrad{Bαµ}, cf (4.3a). According to the RW-symmetry, the coefficientsf‖ and
f⊥ are homogeneous scalar fields (e.g.f‖ = f‖(θ)) which must obey the Bianchi constraint
(cf (1.11))

ḟ‖ + 2Hf‖ − 2
ζ

Rf⊥ ≡ 0 (7.4)

whereζ = ζ(θ) is another homogeneous scalar. Thus we may put

f‖ = σ + ζ 2

R2
(7.5a)

f⊥ = ζ̇

R (7.5b)

† Since the coupling constantg has been absorbed here into the physical field strength(ph)Fµν in order to obtain
the geometric notion of curvatureFµν (

.= g
h̄c
(ph)Fµν ), the generalized Maxwell equation (7.1) must contain the

fine structure constantα as a prefactor of the matter currentJµ.
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Table 1. Type of universe and associated HamiltonianHµ (7.7).

scalar functionh

σ hr = hc =
0 (flat) − ζ

2R 0

−1 (closed) ±1−ζ
2R 0

+1 (open) − ζ
2R ± 1

2R

and the Bianchi identity (7.4) is safely satisfied, with the (gauge plus coordinate covariant)
derivative of the triad fieldBµ being given by [17]

DµBν = −HbνBµ + i

2

ζ

R [Bµ,Bν ]. (7.6)

Once the SU(2)-curvature has been specified consistently through equation (7.3), the
next step again consists of determining the HamiltonianHµ from the integrability condition
(2.12). SinceHµ is some non-Hermitian 1-form, taking its values in the Lie algebra
GL(2,C), we try the following ansatz

Hµ = ηbµ1I+ hBµ (7.7)

with the two complex scalar fieldsη, h

η = ηr + iηc (7.8a)

h = hr + ihc (7.8b)

still to be determined. The corresponding solutions are collected in table 1.
But with the Hamiltonian being known, one readily computes the complex currenthµ

(3.2) as

hµ = 6h(3f‖ − 4h2)bµ (7.9)

which is the SU(2) analogue of the Spin(1, 3) result (4.14); (4.15). Furthermore,
decomposing this current into its real and imaginary parts according to (3.4a) readily yields

tµ = 6hr

(
3
σ + ζ 2

R2
+ 12h2

c − 4h2
r

)
bµ (7.10a)

zµ = 6hc

(
4h2

c − 12h2
r + 3

σ + ζ 2

R2

)
bµ. (7.10b)

Therefore, one merely needs to take the scalarh from table 1 and introduce it into the
present result (7.9) to find for the topological current

zµ =


0 σ = 0,−1

± 12

R3
bµ σ = +1.

(7.11)

Thus, just as for the Spin(1, 3) case (4.22), the present topological currentzµ (7.11) is
non-trivial only for theopen universe (σ = +1) and includes here as integral surfaces
the open time-slicesθ = constant, which extend to spatial infinity. This outcome is in
complete agreement with the results of the preceeding section and thus we have vanishing
topological numbernz = 0 for all kinds of universes (σ = 0, ±1). However, it should be
remarked here that the Spin(1, 3) result (4.22) does refer to a very special field configuration
and we cannot be sure whether there are also configurations with non-trivial values of the
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topological numbernz. On the other hand, the present results for SU(2) bundles are quite
general so that we can rely upon the fact thatnz must always be zero (apart from those
pathological cases (6.21)).

Finally, let us also briefly consider the real parttµ (7.10a) which is found by means of
table 1 as

tµ =



−6
ζ 3

R3
bµ σ = 0

6
−ζ 3+ 3ζ ∓ 2

R3
bµ σ = −1

−6
ζ 3+ 3ζ

R3
bµ σ = +1.

(7.12)

For a discussion of this result, first remember the corresponding Yang–Mills fieldFµν
(7.3). Obviously, it is possible to have a Yang–Mills vacuum (Fµν = 0) only for a closed
(σ = −1) and for a flat universe (σ = 0). The associated vacuum values areζ = 0 (for
σ = 0) andζ = ±1 (for σ = −1). Thus, a topologically non-trivial situation is encountered
only for the closed universe (σ = −1) where the two different vacuum phases (ζ = ±1)
are equipped with twodifferent topological numbersnt (3.22), namelynt may be 0 or 1
(resp.nt = 0, −1).

Consequently, we can have field configurations which initially (θin → −∞) are in one
kind of the Yang–Mills vacuum (e.g.nt,in = 0) and finally (θfin → +∞) terminate at the
other kind of vacuum (i.e.nt,fin = +1). In Euclidean field theory, such a vacuum transition
has been called an ‘instanton’ [20, 21]. Our present result now states that those (real)
instanton solutions are possible also over apseudo-Riemannian spacetime. The essential
point here is that the radiusR (4.1) of the universe may change with respect to cosmic time
θ and this expansion just acts as a kind of damping effect which is necessary for settling
down the Yang–Mills variableζ to one of its vacuum values (±1).

The free (Jν = 0) Yang–Mills equation (7.1) reads for the variableζ [17]

ζ̈ +Hζ̇ + 2
σ + ζ 2

R2
ζ = 0 (7.13)

which may be re-interpreted as the Newtonian equation for the motion of some point-particle
in a double-well potential (σ = −1). As usual, a first integral of the mechanical equation
of motion (7.13) is the well known energy conservation law

1

2
ζ̇ 2+ 1

2

(σ + ζ 2)2

R2
= 4π

3

W∗
h̄c

(R2
∗
R

)2

(R∗,W∗ = constant).

(7.14)

One may now imagine a cosmological situation where initially (θin → −∞) the radiusR
is a large constant ( H = 0) and the Yang–Mills field is in one of its vacuum phases
(ζ ≈ −1, nt = 0). When the universe begins to contract, the Hubble expansion rate
becomesnegativeand excites the variableζ to oscillate with ever increasing amplitude
around its original vacuum value (ζ = −1). Thereby the Newtonian particle may slide into
the other well (ζ ≈ +1) and if the universe re-expands in a suitably way ( H > 0), the
particle may settle down at this new equilibrium value (ζ = +1). In field-theoretic terms
this picture states that the Yang–Mills field has been cast out of its original vacuum value
(ζ = −1) by contraction of the universe (H < 0) and has then been forced down into its
new vacuum value (ζ = +1) by expansionof the universe (H > 0).
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8. Discussion

Since RST is a rather general framework which also embraces the spinor as the scalar
realizations (Dirac and Klein–Gordon theories), the general results of RST must be valid for
all its specific realizations. Thus the topological conservation laws, found in this paper, must
hold for any possible realization of RST, especially for the Dirac case which was exemplified
explicitly by the preceding considerations. In this way, RST reveals its usefulness as a
special technique for investigating the well known wave equations of relativistic quantum
mechanics. Indeed, one may doubt whether the present topological conservation laws could
have been discovered also via the traditional approach to relativistic quantum mechanics.
But clearly, whenever a formal method works very well, one is tempted to think that it will
also reflect what is really going on in nature. In this sense, the RST has already been used
to account for the non-local phenomena in quantum theory [22, 23]. It remains to be shown
whether a reformulation of the whole quantum theory within the general framework of RST
actually yields a better understanding of the microworld.
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